VTS-ID/7426

Lizenz
Bitte zitieren Sie dieses Dokument als
URL: http://vts.uni-ulm.de/doc.asp?id=7426
URN: urn:nbn:de:bsz:289-vts-74265

Metadaten

Optionale Metadatenformate: RIS-Export | oai_dc | XMetaDissPlus(v1.3) | xMetaDissPlus(v2.0)

Titel Wild quotient singularities of arithmetic surfaces and their regular models
Autor / Hrsg. Király, Franz
Dokumentart Dissertation
Institution Universität Ulm.  Fakultät für Mathematik und Wirtschaftswissenschaften
DDC-Sachgruppe Mathematics (ddc:510)
Schlagwörter
(): Schlagwortschema
Arithmetical algebraic geometry (LCSH)
Arithmetische Geometrie (SWD)
Invariantentheorie (SWD)
Invariants (LCSH)
Singularität <Mathematik> (SWD)
Singularities: Mathematics (LCSH)
Sprache englisch
Jahr der Erstellung 2010
Signatur Z: J-H 13.818; N: J-H 9.884
VTS-Veröffentlichung 16.11.2010
Statistik 415 Zugriffe seit 16.11.2010
Abstract This thesis adresses the problem of tame and wild cyclic quotient singularities of local Noetherian rings and arithmetic surfaces. In chapter 2, we study the ring of invariants of a local Noetherian ring by a tame cyclic action. We collect and generalize classic results on tame cyclic quotient singularities in the context of toric geometry. In chapter 3, we prove algebraic results on the invariant ring of a local Noetherian ring by a possibly wild cyclic action of prime order. The central result is a characterization of monogenous extensions which can be read as a regularity criterion for the invariant ring generalizing a criterion of Serre. In chapter 4, we relate the structure of a quotient singularity of a regular arithmetic surface to the action of the group on its models. In particular, we prove results relating the minimal normal crossings desingularization of the quotient to certain models of the original surface.

Dateien

Anzahl der Teildokumente: 1

TeildokumentFormatZertifikat / Hash
vts_7426_10554.pdf
Dateigröße: 943 kByte
101 Seiten
application/pdfPGP-Signatur: DH/DSS Zertifikat
MD5-Hash: 2f65dd789f36b80216aa47ab6694c3ee